Summer School & Symposium on Wireless Communications
May 31, 2012

Physical Layer Security in Wireless Networks

Vince Poor
(poor@princeton.edu)

Supported in part by NSF under Grant CCF-1016671
Outline

1. Motivation & Background

2. Physical Layer Security in Basic Network Models
 - A Paradigm: The Broadcast Channel with Confidential Messages
 - Other Channels (Briefly)

3. Other Results & Open Issues

4. A Related Problem: Privacy (Briefly)
Motivation & Background
Exploiting the Wireless Physical Layer

- Key Techniques for Improving Capacity & Reliability:
 - Multiple-Antenna Systems (MIMO)
 - Cooperation & Relaying
 - Cognitive Radio

Physical Layer Security in Wireless Networks
Exploiting the Wireless Physical Layer

- Key Techniques for Improving **Capacity & Reliability**:
 - Multiple-Antenna Systems (MIMO)
 - Cooperation & Relaying
 - Cognitive Radio

- **What About Security?**
Exploiting the Wireless Physical Layer

- Key Techniques for Improving **Capacity & Reliability**:
 - *Multiple-Antenna Systems (MIMO)*
 - *Cooperation & Relaying*
 - *Cognitive Radio*

- **What About Security?**
 - Traditionally a *higher-network-layer issue*

Physical Layer Security in Wireless Networks
Exploiting the Wireless Physical Layer

- Key Techniques for Improving **Capacity & Reliability**:
 - Multiple-Antenna Systems (MIMO)
 - Cooperation & Relaying
 - Cognitive Radio

- What About **Security**?
 - Traditionally a *higher-network-layer issue*
 - *Encryption* can be complex and difficult without infrastructure (e.g., in ad-hoc networks)

Physical Layer Security in Wireless Networks
Exploiting the Wireless Physical Layer

- Key Techniques for Improving **Capacity & Reliability**:
 - Multiple-Antenna Systems (MIMO)
 - Cooperation & Relaying
 - Cognitive Radio

- What About **Security**?
 - Traditionally a *higher-network-layer* issue
 - *Encryption* can be complex and difficult without infrastructure (e.g., in ad-hoc networks)
 - *Information theoretic security* characterizes the fundamental ability of the physical layer to provide security (confidentiality)
Exploiting the Wireless Physical Layer

- Key Techniques for Improving Capacity & Reliability:
 - Multiple-Antenna Systems (MIMO)
 - Cooperation & Relaying
 - Cognitive Radio
- What About Security?
 - Traditionally a higher-network-layer issue
 - Encryption can be complex and difficult without infrastructure (e.g., in ad-hoc networks)
 - Information theoretic security characterizes the fundamental ability of the physical layer to provide security (confidentiality)
 - Caveat: This is still largely a theoretical issue

Physical Layer Security in Wireless Networks
Physical Layer Security
Plausibility

Physical Layer Security in Wireless Networks
Physical Layer Security in Wireless Networks
Quantifying Security: Equivocation

\[I(W;Y)/n = H(W)/n - H(W|Y)/n \]
\[= 1 - 0 \]
\[= 1 \]

\[I(W;Z)/n = H(W)/n - H(W|Z)/n \]
\[= 1 - 1 \]
\[= 0 \]
Quantifying Security: Equivocation

Of interest:
- capacity-equivocation regions
- secrecy capacity regions (rate = equivocation)

Physical Layer Security in Wireless Networks
A (Very) Brief History

- Shannon [BSTJ’49]: For cipher, need $H(K) > H(S)$.

Physical Layer Security in Wireless Networks
A (Very) Brief History

- **Shannon** [BSTJ’49]: For cipher, need $H(K) > H(S)$.
- **Wyner** [BSTJ’75]: For the wire-tap channel

![Diagram of wire-tap channel]

the wire-tapper must be degraded.

Physical Layer Security in Wireless Networks
Physical Layer Security in Basic Network Models
A Paradigm: The Broadcast Channel with Confidential Messages
Broadcast Channel with Confidential (BCC) Messages

Csiszár & Körner [IT’78]: Discrete Memoryless BCC

Physical Layer Security in Wireless Networks
Broadcast Channel with Confidential (BCC) Messages

Csiszár & Körner [IT’78]: Discrete Memoryless BCC

Liang, Poor & Shamai [IT’08]:
- Gaussian BCC
 - secrecy-capacity region
- Fading BCC
 - secrecy-capacity region
 - exploit fading to achieve secrecy

Physical Layer Security in Wireless Networks
Gaussian BCC

Physical Layer Security in Wireless Networks
Gaussian BCC: Secrecy Capacity Regions

Physical Layer Security in Wireless Networks
Fading BCC: Secrecy Capacity Regions

Physical Layer Security in Wireless Networks
Fading BCC: Secrecy Capacity Regions

Physical Layer Security in Wireless Networks
Other Channels of Interest
Multiple-Access Channel

Physical Layer Security in Wireless Networks
Multiple-Access Channel with Confidential Messages

Liang & Poor - IT’08 (AWGN) & Liu, Liang & Poor – IT’11 (fading)

Physical Layer Security in Wireless Networks
Multiple-Access Channel with Confidential Messages

Liang & Poor - IT’08 (AWGN) & Liu, Liang & Poor – IT’11 (fading)

User 1 $\rightarrow \frac{1}{n} H(W_2 \mid Y_1^n X_1^n W_0 W_1)$

$W_1 \rightarrow Y_1 X_1$

$W_0 \rightarrow Y_1 X_1$

$W_2 \rightarrow Y_2 X_2$

User 2 $\rightarrow \frac{1}{n} H(W_3 \mid Y_2^n X_2^n W_0 W_2)$

$\rightarrow Y \rightarrow \hat{W}_0 \hat{W}_1 \hat{W}_2$

Physical Layer Security in Wireless Networks
Multiple-Access Channel: AWGN

Physical Layer Security in Wireless Networks
Multiple-Access Channel: Fading

- $|h_1|^2, |h_2|^2$ and $|g_1|^2$ are exponentially distributed with means $\sigma_1, \sigma_2=1$ and $\sigma_3=1$
- power constraint $P_1=P_2=10$ dB, and Gaussian noise variance $\nu = u = 2$

Physical Layer Security in Wireless Networks
Other Channels of Interest

- **Interference Channel** [w/ Liang, Someck-Baruch, Shamai, Verdú - IT’09 (cognitive) & w/ Koyluoglu, El Gamal, Lai - IT’11 (interference alignment)]:

 \[\begin{align*}
 \text{Transmitter 1} & \quad \text{Receiver 1/Wire-tapper} \\
 W_1 \to X_1^n & \to Y^n \to \hat{W}_1^{(1)}, \frac{1}{n} H(W_2 | Y^n) \\
 W_2 \to X_2^n & \to Z^n \to \hat{W}_1^{(2)} \hat{W}_2
 \end{align*} \]
Other Channels of Interest

- **Interference Channel** [w/ Liang, Someck-Baruch, Shamai, Verdú - IT’09 (cognitive) & w/ Koyluoglu, El Gamal, Lai - IT’11 (interference alignment)]:

 \[
 W_1 \rightarrow X_1^n \rightarrow Y^n \rightarrow \hat{W}_1^{(1)}, \frac{1}{n}H(W_2 | Y^n)
 \]

 \[
 W_2 \rightarrow X_2^n \rightarrow Z^n \rightarrow \hat{W}_1^{(2)}\hat{W}_2
 \]

- **Relay Channels** [e.g., w/ Aggarwal, Sankar, Calderbank – JWCN’09 & w/ Kim – IT’11]: Source and relay cooperate to improve security.
Other Channels of Interest

- **Interference Channel** [w/ Liang, Someck-Baruch, Shamai, Verdú - IT’09 (cognitive) & w/ Koyluoglu, El Gamal, Lai - IT’11 (interference alignment)]:

 ![Interference Channel Diagram]

 - **Relay Channels** [e.g., w/ Aggarwal, Sankar, Calderbank – JWCN’09 & w/ Kim – IT’11]: Source and relay cooperate to improve security.

 - **MIMO** [e.g., w/ Liu, Liu, Shamai – IT’10]: Use of multiple transmit & receive antennas allows simultaneous secure broadcast without rate penalty.

Physical Layer Security in Wireless Networks
Other Results & Open Issues

Physical Layer Security in Wireless Networks
Other Results of Interest

• **Authentication** [w/ Lai, El-Gamal – IT’09]: “Cheating” probability is characterized for authentication in noisy channels.

• **Feedback** [e.g., w/ Lai, El-Gamal – IT’08, w/ Liu, Tang, Spasojevic – IT’09 & w/ Kim – IT’10]: Judicious use of feedback enhances security.

• **Code Design** [e.g., w/ Liu, Liang, Spasojevic (under review)]: Nested structure for secure error-control codes for the wire-tap channel.

• **Cross Layer Design** ...

Physical Layer Security in Wireless Networks
Scheduling of Secure Broadcast

[Liang, Poor & Ying – IFS’11]

- Three objectives:
 - reliability (low error probability)
 - security (perfect secrecy)
 - stability (queues remain finite)

Physical Layer Security in Wireless Networks
Scheduling of Secure Broadcast

[Liang, Poor & Ying – IFS’11]

- **Three objectives:**
 - reliability (low error probability)
 - security (perfect secrecy)
 - stability (queues remain finite)
- **Two time scales:**
 - packet level (scheduling)
 - symbol level (power control)
Scheduling of Secure Broadcast

[Liang, Poor & Ying – IFS’11]

- **Three objectives:**
 - reliability (low error probability)
 - security (perfect secrecy)
 - stability (queues remain finite)

- **Two time scales:**
 - packet level (scheduling)
 - symbol level (power control)

- **Two eavesdropping models:**
 - collaborative - MIMO wiretapper [Khisti & Wornell - IT’10]; achieve secrecy-throughput optimality via time division
 - non-collaborative - compound wiretapper [w/ Liang, Kramer, Shamai - JWCN’09]; time division is suboptimal, but can still stabilize

Physical Layer Security in Wireless Networks
A Related Problem: Privacy
Many electronic information sources are publicly accessible – Google, Facebook, open governance, census, etc.

The utility of these sources depends on their accessibility

But, they can also leak private information

Physical Layer Security in Wireless Networks
Privacy-Utility Tradeoff

- Privacy is not secrecy:

![Diagram showing Alice, Bob, and Eve in a network setup. Alice sends a message to Bob, but Eve, an eavesdropper, intercepts the message.]
Privacy is not secrecy:

Physical Layer Security in Wireless Networks
Privacy-Utility Tradeoff

- Privacy is not secrecy:

 ![Diagram showing Alice, Bob, and Eve in wireless network](image)

 - Denial of access (secrecy) makes a data source **useless**.
Privacy is not secrecy:

Denial of access (secrecy) makes a data source useless.

It is useful to examine the tradeoff between privacy and utility of a data source

Physical Layer Security in Wireless Networks
A database is a **table** – rows: individual entries (total of n); columns: attributes for each individual (total of K).

Physical Layer Security in Wireless Networks
Database: Source Model

- Database with \(n \) rows is a sequence of \(n \) i.i.d. observations of a vector random variable \(\mathbf{X} = (X_1 \ X_2 \ \ldots \ X_K) \) with a joint distribution:

\[
\mathbf{p}_\mathbf{X}(\mathbf{x}) = \mathbf{p}_{X_1X_2\ldots X_K}(x_1, x_2, \ldots, x_K)
\]

Physical Layer Security in Wireless Networks
• Database with \(n \) rows is a sequence of \(n \) i.i.d. observations of a vector random variable \(\mathbf{X} = (X_1, X_2, \ldots, X_K) \) with a joint distribution:

\[
p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_K}(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_K)
\]

• Attributes divided into public (revealed) and private (hidden) variables, typically not disjoint:

\[
X_{r,k} : \text{revealed} \quad \quad \quad \quad X_{h,k} : \text{hidden} \quad \quad \quad \quad k^{th} \text{ entry: } \mathbf{X}_k = (X_{r,k}, X_{h,k})
\]
Privacy-Utility Tradeoff

- Instead of legitimate and eavesdropping receivers, we have a single receiver with the source being divided into private and public variables.
Privacy-Utility Tradeoff

- Instead of legitimate and eavesdropping receivers, we have a single receiver with the source being divided into private and public variables.

- We can measure utility by distortion of the public variables; and privacy by equivocation on the private variables.
Privacy-Utility Tradeoff

• Instead of legitimate and eavesdropping receivers, we have a single receiver with the source being divided into private and public variables.

• We can measure utility by distortion of the public variables; and privacy by equivocation on the private variables.

• Leads to an information theoretic characterization: equivocation-distortion [w/ Sankar, Rajagopalan (under review)]
Privacy-Utility Tradeoff

• Instead of legitimate and eavesdropping receivers, we have a single receiver with the source being divided into private and public variables.

• We can measure utility by distortion of the public variables; and privacy by equivocation on the private variables.

• Leads to an information theoretic characterization: equivocation-distortion [w/ Sankar, Rajagopalan (under review)]

• Can consider multiple queries (successive disclosure) & multiple databases (side information)
Privacy-Utility Tradeoff

- Instead of legitimate and eavesdropping receivers, we have a single receiver with the source being divided into private and public variables.

- We can measure utility by distortion of the public variables; and privacy by equivocation on the private variables.

- Leads to an information theoretic characterization: equivocation-distortion [w/ Sankar, Rajagopalan (under review)]

- Can consider multiple queries (successive disclosure) & multiple databases (side information)

- Applications include smart grid: competitive privacy & smart metering [w/ Sankar, Kar, Tandon & w/ Rajagopalan, Sankar, Mohajer – SmartGridComm’11]
Thank You!